Search results for "Kernel Density Estimation."
showing 10 items of 34 documents
Spatial analysis of traffic accidents near and between road intersections in a directed linear network.
2019
Although most of the literature on traffic safety analysis has been developed over areal zones, there is a growing interest in using the specific road structure of the region under investigation, which is known as a linear network in the field of spatial statistics. The use of linear networks entails several technical complications, ranging from the accurate location of traffic accidents to the definition of covariates at a spatial micro-level. Therefore, the primary goal of this study was to display a detailed analysis of a dataset of traffic accidents recorded in Valencia (Spain), which were located into a linear network representing more than 30 km of urban road structure corresponding t…
Semi-Supervised Support Vector Biophysical Parameter Estimation
2008
Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.
The shape of small sample biases in pricing kernel estimations
2016
AbstractNumerous empirical studies find pricing kernels that are not-monotonically decreasing; the findings are at odds with the pricing kernel being marginal utility of a risk-averse, so-called representative agent. We study in detail the common procedure which estimates the pricing kernel as the ratio of two separate density estimations. In the first step, we analyse theoretically the functional dependence for the ratio of a density to its estimated density; this cautions the reader regarding potential computational issues coupled with statistical techniques. In the second step, we study this quantitatively; we show that small sample biases shape the estimated pricing kernel, and that est…
Identification of differential risk hotspots for collision and vehicle type in a directed linear network
2019
Traffic accidents can take place in very different ways and involve a substantially distinct number and types of vehicles. Thus, it is of interest to know which parts of a road structure present an overrepresentation of a specific type of traffic accident, specially for some typologies of collisions and vehicles that tend to trigger more severe consequences for the users being involved. In this study, a spatial approach is followed to estimate the risk that different types of collisions and vehicles present in the central area of Valencia (Spain), considering the accidents observed in this city during the period 2014-2017. A directed spatial linear network representing the non-pedestrian ro…
Optimized Kernel Entropy Components
2016
This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…
Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis
2020
Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with Kernel-based Naïve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the model is tested on a voice measurement dataset that is collected from “UC Irvine Machine Learning Repository.” The dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chao…
Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects
2014
Purpose/Objective(s) To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variatio…
GIS-data related route optimization, hierarchical clustering, location optimization, and kernel density methods are useful for promoting distributed …
2019
Currently, geographic information system (GIS) models are popular for studying location-allocation-related questions concerning bioenergy plants. The aim of this study was to develop a model to investigate optimal locations for two different types of bioenergy plants, for farm and centralized biogas plants, and for wood terminals in rural areas based on minimizing transportation distances. The optimal locations of biogas plants were determined using location optimization tools in R software, and the optimal locations of wood terminals were determined using kernel density tools in ArcGIS. The present case study showed that the utilized GIS tools are useful for bioenergy-related decision-maki…
Kernel estimation and display of a five-dimensional conditional intensity function
2018
The aim of this paper is to find a convenient and effective method of displaying some second order properties in a neighbourhood of a selected point of the process. The used techniques are based on very general high-dimensional nonparametric smoothing developed to define a more gen- eral version of the conditional intensity function introduced in earlier earthquake studies by Vere-Jones (1978). 1976) is commonly used for such a purpose in discussing the cumulative behavior of interpoint distances about an initial point. It is defined as the expected number of events falling within a given distance of the initial event, divided by the overall density (rate in 2-dimensions) of the process, sa…
Learning with the kernel signal to noise ratio
2012
This paper presents the application of the kernel signal to noise ratio (KSNR) in the context of feature extraction to general machine learning and signal processing domains. The proposed approach maximizes the signal variance while minimizes the estimated noise variance in a reproducing kernel Hilbert space (RKHS). The KSNR can be used in any kernel method to deal with correlated (possibly non-Gaussian) noise. We illustrate the method in nonlinear regression examples, dependence estimation and causal inference, nonlinear channel equalization, and nonlinear feature extraction from high-dimensional satellite images. Results show that the proposed KSNR yields more fitted solutions and extract…