Search results for "Kernel Density Estimation."

showing 10 items of 34 documents

Spatial analysis of traffic accidents near and between road intersections in a directed linear network.

2019

Although most of the literature on traffic safety analysis has been developed over areal zones, there is a growing interest in using the specific road structure of the region under investigation, which is known as a linear network in the field of spatial statistics. The use of linear networks entails several technical complications, ranging from the accurate location of traffic accidents to the definition of covariates at a spatial micro-level. Therefore, the primary goal of this study was to display a detailed analysis of a dataset of traffic accidents recorded in Valencia (Spain), which were located into a linear network representing more than 30 km of urban road structure corresponding t…

050210 logistics & transportationModels StatisticalComputer science05 social sciencesKernel density estimationPublic Health Environmental and Occupational HealthNegative binomial distributionAccidents TrafficHuman Factors and ErgonomicsRangingSpatial heterogeneityLinear networkSpatio-Temporal AnalysisOverdispersionSpain0502 economics and businessStatisticsCovariateHumans0501 psychology and cognitive sciencesBuilt EnvironmentSafety Risk Reliability and QualitySpatial analysis050107 human factorsAccident; analysis and prevention
researchProduct

Semi-Supervised Support Vector Biophysical Parameter Estimation

2008

Two kernel-based methods for semi-supervised regression are presented. The methods rely on building a graph or hypergraph Laplacian with both the labeled and unlabeled data, which is further used to deform the training kernel matrix. The deformed kernel is then used for support vector regression (SVR). The semi-supervised SVR methods are sucessfully tested in LAI estimation and ocean chlorophyll concentration prediction from remotely sensed images.

Artificial neural networkbusiness.industryComputer scienceEstimation theoryPattern recognitionRegression analysisSupport vector machineStatistics::Machine LearningKernel (linear algebra)Kernel methodVariable kernel density estimationPolynomial kernelRadial basis function kernelArtificial intelligencebusinessLaplace operatorIGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

The shape of small sample biases in pricing kernel estimations

2016

AbstractNumerous empirical studies find pricing kernels that are not-monotonically decreasing; the findings are at odds with the pricing kernel being marginal utility of a risk-averse, so-called representative agent. We study in detail the common procedure which estimates the pricing kernel as the ratio of two separate density estimations. In the first step, we analyse theoretically the functional dependence for the ratio of a density to its estimated density; this cautions the reader regarding potential computational issues coupled with statistical techniques. In the second step, we study this quantitatively; we show that small sample biases shape the estimated pricing kernel, and that est…

Computer Science::Computer Science and Game Theory050208 finance05 social sciencesKernel density estimationMonotonic functionRepresentative agentImplied volatility01 natural sciencesOdds010104 statistics & probabilityEmpirical researchStochastic discount factor0502 economics and businessEconometrics0101 mathematicsMarginal utilityGeneral Economics Econometrics and FinanceFinanceMathematicsQuantitative Finance
researchProduct

Identification of differential risk hotspots for collision and vehicle type in a directed linear network

2019

Traffic accidents can take place in very different ways and involve a substantially distinct number and types of vehicles. Thus, it is of interest to know which parts of a road structure present an overrepresentation of a specific type of traffic accident, specially for some typologies of collisions and vehicles that tend to trigger more severe consequences for the users being involved. In this study, a spatial approach is followed to estimate the risk that different types of collisions and vehicles present in the central area of Valencia (Spain), considering the accidents observed in this city during the period 2014-2017. A directed spatial linear network representing the non-pedestrian ro…

Computer scienceKernel density estimationPoison controlHuman Factors and Ergonomicscomputer.software_genreRisk Assessment0502 economics and businessHumans0501 psychology and cognitive sciencesBuilt EnvironmentSafety Risk Reliability and QualitySpatial analysis050107 human factorsSpatial Analysis050210 logistics & transportation05 social sciencesAccidents TrafficPublic Health Environmental and Occupational HealthDifferential (mechanical device)CollisionMotor VehiclesIdentification (information)SpainSample size determinationData miningRisk assessmentMonte Carlo MethodcomputerAccident Analysis & Prevention
researchProduct

Optimized Kernel Entropy Components

2016

This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…

FOS: Computer and information sciencesComputer Networks and CommunicationsKernel density estimationMachine Learning (stat.ML)02 engineering and technologyKernel principal component analysisMachine Learning (cs.LG)Artificial IntelligencePolynomial kernelStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringMathematicsbusiness.industry020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsComputer Science - LearningKernel methodKernel embedding of distributionsVariable kernel density estimationRadial basis function kernelKernel smoother020201 artificial intelligence & image processingArtificial intelligencebusinessSoftwareIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis

2020

Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with Kernel-based Naïve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the model is tested on a voice measurement dataset that is collected from “UC Irvine Machine Learning Repository.” The dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chao…

Firefly protocolParkinson's diseasekernel density estimation functionComputer Networks and CommunicationsComputer scienceDopaminergicGeneral EngineeringChaotic020206 networking & telecommunications02 engineering and technologymedicine.diseaseChaos theorylcsh:QA75.5-76.95chaotic mapscalibration measure0202 electrical engineering electronic engineering information engineeringmedicine020201 artificial intelligence & image processinglcsh:Electronic computers. Computer sciencereceiver operating characteristic curvemetaheuristic algorithmNeuroscienceInternational Journal of Distributed Sensor Networks
researchProduct

Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

2014

Purpose/Objective(s) To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variatio…

Functional principal component analysisCancer ResearchMultivariate statisticsRadiationbusiness.industryKernel density estimationFunctional data analysisRegression analysisLogistic regressionConfidence intervalOncologyStatisticsPrincipal component analysisMedicineRadiology Nuclear Medicine and imagingNuclear medicinebusinessInternational Journal of Radiation Oncology*Biology*Physics
researchProduct

GIS-data related route optimization, hierarchical clustering, location optimization, and kernel density methods are useful for promoting distributed …

2019

Currently, geographic information system (GIS) models are popular for studying location-allocation-related questions concerning bioenergy plants. The aim of this study was to develop a model to investigate optimal locations for two different types of bioenergy plants, for farm and centralized biogas plants, and for wood terminals in rural areas based on minimizing transportation distances. The optimal locations of biogas plants were determined using location optimization tools in R software, and the optimal locations of wood terminals were determined using kernel density tools in ArcGIS. The present case study showed that the utilized GIS tools are useful for bioenergy-related decision-maki…

Geographic information systemPower stationbiomassapaikkatiedot020209 energy116 Chemical sciencesKernel density estimationta220tuotantoketjutEnergy Engineering and Power Technologywood terminal02 engineering and technologyAgricultural engineeringterminaalitverkostoanalyysioptimointi020401 chemical engineeringBiogasBioenergybiogas0202 electrical engineering electronic engineering information engineeringbiomassa (teollisuus)0204 chemical engineeringnetwork analysista218ta113tehtaatbiokaasuRenewable Energy Sustainability and the Environmentbusiness.industrycircular economypuut (kasvit)SizingHierarchical clusteringbioenergiapaikkatietojärjestelmätkiertotalousEnvironmental sciencelocation-allocationbiokaasulaitoksetRural areabusinessSustainable Energy Technologies and Assessments
researchProduct

Kernel estimation and display of a five-dimensional conditional intensity function

2018

The aim of this paper is to find a convenient and effective method of displaying some second order properties in a neighbourhood of a selected point of the process. The used techniques are based on very general high-dimensional nonparametric smoothing developed to define a more gen- eral version of the conditional intensity function introduced in earlier earthquake studies by Vere-Jones (1978). 1976) is commonly used for such a purpose in discussing the cumulative behavior of interpoint distances about an initial point. It is defined as the expected number of events falling within a given distance of the initial event, divided by the overall density (rate in 2-dimensions) of the process, sa…

Kernel density estimationlcsh:QC801-809Process (computing)Neighbourhood (graph theory)Kernel intensity estimator seismic activity multi-demensional point processExpected valuelcsh:QC1-999lcsh:Geophysics. Cosmic physicsStatisticsOrder (group theory)Effective methodPoint (geometry)lcsh:QSettore SECS-S/01 - Statisticalcsh:Sciencelcsh:PhysicsEvent (probability theory)Mathematics
researchProduct

Learning with the kernel signal to noise ratio

2012

This paper presents the application of the kernel signal to noise ratio (KSNR) in the context of feature extraction to general machine learning and signal processing domains. The proposed approach maximizes the signal variance while minimizes the estimated noise variance in a reproducing kernel Hilbert space (RKHS). The KSNR can be used in any kernel method to deal with correlated (possibly non-Gaussian) noise. We illustrate the method in nonlinear regression examples, dependence estimation and causal inference, nonlinear channel equalization, and nonlinear feature extraction from high-dimensional satellite images. Results show that the proposed KSNR yields more fitted solutions and extract…

Kernel methodSignal-to-noise ratioKernel embedding of distributionsPolynomial kernelbusiness.industryVariable kernel density estimationKernel (statistics)Radial basis function kernelPattern recognitionArtificial intelligencebusinessKernel principal component analysisMathematics2012 IEEE International Workshop on Machine Learning for Signal Processing
researchProduct